Attachment of hydrogel microstructures and proteins to glass via thiol-terminated silanes.
نویسندگان
چکیده
Micropatterning strategies often call for attachment of non-fouling biomaterials and immobilization of proteins in order to create biosensing surfaces or to control cell-surface interactions. Our laboratory has made frequent use of hydrogel photolithography - a micropatterning process for immobilizing poly(ethylene glycol) (PEG) hydrogel microstructures on glass surfaces. In the present study we explored the use of thiolsilane as a coupling layer for both covalent anchoring of hydrogel microstructures and covalent immobilization of proteins on glass. These new surfaces were compared to acryl-silane functionalized glass slides that allowed covalent attachment of gels but only physical adsorption of proteins as well as surfaces containing a mixture of both functional groups. We observed comparable attachment and retention of hydrogel microstructures on acryl and thiol-terminated silanes. Ellipsometry studies revealed presence of significantly higher level of proteins on thiol-functionalized glass. Overall, our studies demonstrate that thiol-silane functionalized glass surfaces may be used to create complex micropatterned surfaces comprised of covalently attached hydrogels and proteins. This simple and effective surface modification strategy will be broadly applicable in cellular engineering and biosensing studies employing hydrogel micropatterns.
منابع مشابه
The use of glass substrates with bi-functional silanes for designing micropatterned cell-secreted cytokine immunoassays.
It is often desirable to sequester cells in specific locations on the surface and to integrate sensing elements next to the cells. In the present study, surfaces were fabricated so as to position cytokine sensing domains inside non-fouling poly(ethylene glycol) (PEG) hydrogel microwells. Our aim was to increase sensitivity of micropatterned cytokine immunoassays through covalent attachment of b...
متن کاملElectrochemical release of hepatocyte-on-hydrogel microstructures from ITO substrates.
This paper describes a novel platform that utilizes micropatterning and electrochemistry to release cells-on-hydrogel microstructures from conductive indium tin oxide (ITO) substrates. In this approach, UV photopolymerization was employed to micropattern heparin-based hydrogels onto glass substrates containing ITO electrodes. ITO/glass substrates were first functionalized with acrylated silane ...
متن کاملIntegrating sensing hydrogel microstructures into micropatterned hepatocellular cocultures.
In this paper we describe a microfabrication-derived approach for defining interactions between distinct groups of cells and integrating biosensors with cellular micropatterns. In this approach, photoresist lithography was employed to micropattern cell-adhesive ligand (collagen I) on silane-modified glass substrates. Poly(ethylene glycol) (PEG) photolithography was then used to fabricate hydrog...
متن کاملOptimizing the immobilization of gold nanoparticles on functionalized silicon surfaces: amine- vs thiol-terminated silane
Immobilization of gold nanoparticles on planar surfaces is of great interest to many scientific communities; chemists, physicists, biologists, and the various communities working at the interfaces between these disciplines. Controlling the immobilization step, especially nanoparticles dispersion and coverage, is an important issue for all of these communities. We studied the parameters that can...
متن کاملA versatile approach to high-throughput microarrays using thiol-ene chemistry.
Microarray technology has become extremely useful in expediting the investigation of large libraries of materials in a variety of biomedical applications, such as in DNA chips, protein and cellular microarrays. In the development of cellular microarrays, traditional high-throughput printing strategies on stiff, glass substrates and non-covalent attachment methods are limiting. We have developed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Colloids and surfaces. B, Biointerfaces
دوره 98 شماره
صفحات -
تاریخ انتشار 2012